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Abstract

This work proposes the use of a rigorous approach to the analysis of the fuel-cell diffusive resistances not only at the commercial scale, but also
at the laboratory one. The attention used experimentally for checking diffusion resistances in electrodes, cells and stacks should imply the same

attention in the corresponding data analysis techniques.

For this reason, some corrections to the most common interpretation and correlation procedures have been introduced on the basis of the study

of complex electrodes and comparing these ones with simple ones.

In Part 1 of this work a theoretical discussion of some simple reference cases will be reported. In Part 2 some examples of applications to the

interpretation of the experimental data will be given.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The experimental analysis of heterogeneous kinetics is based,
on the one hand, on very sophisticated measurement methods
while, on the other, it often uses simplified methods for the
interpretation of the results. In particular, for electrochemical
kinetics, this involves the analysis of the complex electrodes
working on non-uniform concentration fields: the current—
voltage experimental results are often just interpreted in the same
manner as those of the simple electrodes, that is in terms of two
parameters only, the exchange current and the limit current, and
without any particular attention to the effects of the geometry,
the flow pattern and the consequent distribution of concentration
on the active surface.

The complexity of cells and stacks at the commercial scale
is well known: ever more detailed and analytical answers to
the problem can be found in detailed simulation tools [1-7].
But the detailed models often use data from laboratory-scale
measurements [8,9], whose interpretation can be affected by the
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scarce consideration of the complex phenomenology that also
exists at relatively small scales. For this reason, a brief review
of the recent history of applied research on fuel cells could
be useful: in research laboratories, and specifically industrial
ones, attention is being shifted more and more frequently from
centimetre cell sizes (“postage stamp” scale) to decimetre cell
sizes (“postcard” scale). The traditional methods for analysing
the electrochemical kinetics, which have been elaborated for
the smaller scale and applied to it with considerable success,
are often too simplified for the larger scale, where the unifor-
mity hypothesis (simple electrodes) is very often inadequate.
In brief, the transition from the postage stamp to the postcard
scale requires some changes in the handling of the laboratory
data.

Similar situations, where the points of view can be articulated
at a local level, or scale, an aggregate level and a macroscopic
level, have been encountered in many different applicative fields,
but perhaps the relationships between the levels have been better
studied and understood for the heterogeneous chemical reactions
of traditional chemical engineering (catalytic or non-catalytic
fluid—solid reactions, fluid—fluid reactions, slurries, trickle beds,
etc. [10]). From this wide scenario of cases, which are, for the
major part, well established in the field of chemical engineering,
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Nomenclature

A corrective coefficient, from the averaging opera-
tion (-)

Co see Eq. (B.5) ()

cL see Eq. (B.7) ()

C; volumetric concentration of the component i
(kmol/m?)

dy see Eq. (B.9) ()

Da diffusivity (m?/s)

fe see Eq. (B.4) ()

F Faraday’s constant (A s/mol)

J current density (A/m?)

J mean electrode current density (A/m?)

kK kinetic constants (depending on the reaction
orders)

ka apparent kinetic constant (m/s)

ke mass transfer coefficient (m/s)

k¢ flow dynamic coefficient (m/s)

ko intrinsic Kinetic constant (m/s)

K global kinetic constant, local value (m/s)

L length (m)

n stoichiometric coefficient for electrons, absolute
value (-)

q volumetric flow rate (m3/s)

r reaction rate, per unit surface (kmol/m? s)

n limit reaction rate (kmol/m?2 s)

’m mean reaction rate (kmol/m? s)

R gas constant (j/mol K)

s thickness (m)

S electrode surface (m?)

T absolute temperature (K)

u utilisation factor (-)

v velocity (m/s)

v (in Appendix A) adimensional voltage (-)

%4 voltage (W/A)

X reaction rate (kmol/m?)

X see Eq. (B.1) ()

y spatial coordinate, orthogonal to the electrode (m)

Y see Eq. (B.2) ()

z spatial coordinate, parallel to the electrode (m)

Greek symbols

o reaction orders, direct reaction (—)

Bi reaction orders, inverse reaction ()

B symmetry factor (—)

n a-dimensional voltage loss (-)

[0) effectiveness factor (-)

(0} Thiele modulus (-)

Vi stoichiometric coefficient (-)

e adimensional axial coordinate (-)

Apexes and indexes

A key reagent (hydrogen at the anode, oxygen at the
cathode)

c concentration

eff effective

eq equilibrium

ex external

generic component

limit

mean value

inlet

reference

electrode surface

exchange

refers to the shifting from the diagonal of Eq. (B.4)
refers to the other electrode

S#H o2 om0 I M~

some useful approaches can be drawn for an analogous study of
many cases of electrochemical interest.

In analysing complex electrodes, overcoming any immedi-
ate and substantially semi-empirical and superficial approach
requires an advanced study of the transport phenomena of
momentum, mass, heat and charge and the real electrode geom-
etry and structure, so that non-trivial physical-mathematical
simulation approaches and their related numerical tools are nec-
essary at the laboratory scale [11]. In other words, a wider point
of view is needed, through which, on the one hand, the level
of complexity necessary and sufficient for a good analysis of
a set of experimental data can be determined and, on the other
hand, the correct formal analytical tools, at the proper level of
simplification, can be found.

Of particular interest, and particular difficulty too, is an anal-
ysis that highlights the behaviour of a single electrode of a couple
of complex electrodes. In such cases it is necessary to maintain
the behaviour of the second electrode constant and uniform,
approximating the behaviour of a simple electrode, so that it can
be considered non-influential, while attention is concentrated on
the protagonist electrode.

When this de-coupling operation succeeds one electrode can
be usefully studied using the standard methods of the chemical
reactor theory and the local electrode kinetics can be more eas-
ily determined. On the other hand, the results of these kinds of
approaches should often only be considered as orienting, while
an effective and quantitative kinetic characterisation requires the
contemporaneous consideration of both the coupled electrodes
and their complexity in terms of velocity and composition fields,
that is the use of complex physical-mathematical models at the
laboratory scale. The use of detailed models is always neces-
sary, in particular, when the thermal regulation is not completely
effective, so that the temperature field cannot be considered
uniform.

Simpler cases are encountered when the experimental inves-
tigations use perturbation methods, that is transient conditions
following variations, often very little variations, in some opera-
tive condition such as temperature, composition, velocity and so
on. Some authors [12,13] have successfully used flow rate and
composition perturbations on the electrodes of a molten carbon-
ate fuel cell to characterise the diffusive limits of the anode and
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cathode. This technique is now under discussion as a system-
atic diagnostic instrument for Ansaldo Fuel Cells’ experimental
cells. In the second part of this paper some preliminary data
of this kind will be reported and analysed and the difficulties
encountered in the interpretation will be underlined: in fact,
when the variations are large enough to produce clearly mea-
surable effects, they are often out of the linear range. Moreover,
similar methods could be useful in the development of poly-
meric membrane fuel cells, for instance the ENEA PEMFCs, as
discussed in the following chapters.

Passing from a theoretical discussion of some simple ref-
erence cases (Part 1) to some examples of their application
to the interpretation of experimental data (Part 2), this work
intends to recommend a rationalisation and generalisation of
the approach to the analysis of the diffusive resistances at the
laboratory scale. In this way, an improvement in the diagnostic
experimental methods can be attained for different applicative
sectors and, in particular, more precise and reliable results in the
characterisation of different kinds of fuel cell electrodes.

Finally, it is to be underlined that the point of view considered
in this work is typical of an engineering approach: as chemical
engineers start from a known intrinsic chemical kinetics and
work on it considering, in particular, mass, heat and momentum
transport phenomena on both the aggregate level (e.g. solid par-
ticles, drops, bubbles) and the reactor level, similarly a known
intrinsic electrochemical kinetics is here assumed (e.g. the Tafel
equation) and then the effects of transport phenomena on the
electrochemical kinetics are discussed. As said, on the commer-
cial scale, mass and heat transport is fully relevant and have to be
taken into account by means of detailed physical-mathematical
models; on the laboratory scale the attention must be focused
mainly on mass transport phenomena, as isothermal conditions
are granted. At both scales momentum transport phenomena
are generally less important in fuel cell electrodes, as laminar
regimes at high Peclet numbers are involved. Intrinsic electro-
chemical kinetics is not discussed at all. This term, summarizing
anumber of complex molecular phenomena on a very small scale
(transport through the ionomeric layer, activation steps, molecu-
lar electrochemical mechanisms, and so on), is here schematized
by means of a relatively simple relationship. On the contrary,
emphasis is given to the question of the reference conditions for
the electrochemical kinetics: this is a relevant point in practical
applications because the choice of an external reference allows
to write a more explicit and univocal kinetic expression being
dependent on the reaction advancement.

The usefulness in this research field of an engineering
approach well established in chemical engineering procedures
can be further underlined. Researchers starting from more spe-
cific electrochemical studies could found in this similitude some
technical suggestions, while chemical engineers could start from
here to fully recognize electrochemical processes as integrant
part of their field of study. The following sections would give
some attention to this ambitious aim; also for this reason the
discussion is maintained, especially for the Part 1, at a general
level, without a specific reference to a particular kind of fuel
cell or electrode and following an analytical approach to focus
attention on these basic concepts.

2. Local diffusive resistances

Fuel cell electrodes are open systems in which a neutral
reagent A, e.g. the hydrogen at the anode, must migrate from
the gaseous phase to the reaction place. The use of Tafel’s equa-
tion for the electrode current is standard practice, but it is well
known that attention has to be given to the concentration effects
of neutral reagents and to the choice of the reference conditions.
For a “simple” electrode, defined in terms of uniform tempera-
ture, voltage and concentrations, the choice of the reference is
obvious; on the other hand, for a complex electrode, that is a
“non-simple” one, at least in terms of a non-uniform composi-
tion field, the exchange current and the equilibrium voltage are
locally related to the composition Cj, as well as to any other dif-
ferent reference composition Cj, for instance the composition
Cj, of the inlet gas, with particular attention to the concentration
Cao of the key reagent A. It is necessary, moreover, to assume
some kind of dependence, for instance a simple proportionality,
between the exchange current and the concentration Cag close
to the electrode.

The choice of a reference condition is a delicate question
that is very often underestimated and neglected. Further details
are reported in Appendix A. Here it should be noted that the
choice of a unique reference composition for all the points of an
electrode, under uniform temperature and voltage conditions,
makes it possible to express the local current density, that is
the local reaction rate for unit surface, merely as a function
of the composition (or the concentration of a key reagent, or
the utilisation factor in relation to the key). The choice of a
unique reference condition can be extended, when needed, to
the electrode where the temperature and/or the voltage are not
uniform.

It is worth noting, in particular, that the uniform voltage
hypothesis implies a good de-coupling operation with respect
to the other electrode: the corresponding total voltage losses are
considered uniform or, at least, their distribution is assumed to
be close to the mean value. On the contrary, in many instances,
only the total voltage difference between the two electrodes can
be assumed to be uniform, while the voltages of the electrodes
are both non-uniform. Therefore, the de-coupling hypothesis has
to be a priori deeply discussed and carefully a posteriori verified
before judging the significance and the reliability of a single
electrode analysis.

The choice of a unique and “external” reference, if coherent,
can be of particular aid: for instance, when the inlet gas compo-
sition is chosen as the reference for both the reaction kinetics and
the reaction rate and a linear and irreversible kinetic function,
to simplify the discussion, is assumed, then the local electrode
kinetics can be written as follows (see Appendix A)

S nF

= e (2 (V- 1
J = Jxo Con exp (Bno), Mo = ( eqo) RT (D

where 7, expresses the electrical voltage difference between
the electrode working under steady state conditions and a ref-
erence electrode under equilibrium conditions at the reference
concentration Ca,. The extension to linear reversible Kinetics
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is straightforward, the extension to non-linear kinetics is only a
little more complex.

In Eq. (1) allowance must be made for the mass transfer resis-
tances between the bulk fluid at concentration Ca, and the fluid
at concentration Cag close to the electrode, by expressing the
ratio Cas/Cp in terms of the limit current, that is the maximum
diffusive flux of the limiting reagent

JL=kcCanF, jLo=kcCaonF, j=k(Ca—Cas)nF (2)

In such a way the local electrode kinetics can be written

c .
j= J( A) (1 - 7) exp(Bn,)
Cho JL

c .
=j*o< A —.’) exp(Bilo) 3)

Cao JLo

The second equation in (3), in particular, demonstrates that
the local current density only depends on the local composi-
tion. In the equations in (3) it is explicitly considered that the
electrode can be locally in contact with a bulk fluid at a con-
centration Ca < Cpo; in turn, the concentration Cas < Ca close
to the electrode can be even lower due to diffusive resistances
associated with the current. The voltage losses become negli-
gible at very low currents and the reference concentration, but
when the low current condition is stressed the equations in (3)
tend to fail because they neglect the reversibility of the reaction.
On the other hand, they are sufficiently general and reliable for
many practical purposes and they are useful in a discussion of
the role of transport and flow phenomena in the performance of
the electrode. As said above, the extension to more complicated
kinetics is only a matter of form.

For complex electrodes working with a continuous reagent
flow, Ca and Cag are local values depending on their position.
In such instances, the use of the local reference Ca

= (1= V— Vgt 4
J=Jx ( ]L> exp(Bn), n=( eq) RT @
leads to a kinetic expression that is only apparently simpler than
the second equation in (3). In fact, in Eq. (4) the parameters j=, ji,
and 7 are all local variables, depending on their position, while
in the second equation in (3) the local current density depends
only on the local concentration Ca. Of course, in both cases the
current density J referring to the whole electrode corresponds to
an averaging operation on the electrode surface.

However, when the operating current is much lower than
the limit current (for instance 3j+, <j <jL/3), the concentration
polarisation, according to an acceptable approximation of the
first equation in (3), can be assumed to be proportional to j/ji,

A J Ca J
o~ (5) () -m(ee) + 7] ®
. J _costj
T B Cake
This circumstance allows a simple and direct interpretation of

voltage—current measurements, in order to evaluate the effects
of mass transfer resistances. In particular, when perturbation

Noc (6)

methods are used under constant current constraints [12], any
k¢ variation can be directly detected in terms of the electrode
voltage. However, Egs. (5) and (6) only have local validity and
are valid for the whole electrode only in the case of a simple
one, while the extension to non-uniform composition electrodes
requires an averaging procedure.

Moreover, (5) demonstrates that the local voltage loss is
partly imputable to diffusive effects (Cas<Ca) and partly to
a non-uniform composition field (Ca < Cao): the measurement
of n, and its variations cannot be directly connected to the dif-
fusive resistances unless there is information available to allow
appropriate corrections to be made to the results in terms of
non-uniform concentration fields.

3. The analogy with heterogeneous chemical Kkinetics

If, for simplicity, the discussion is limited to irreversible linear
kinetics and the following definitions
Jxo J

ko = ex , r=—— 7

o (nFCAO) p(Bno) nF )

are used, so that an “intrinsic” kinetic constant k, of the elec-

trochemical reaction is defined as a function of the electrode

over-potential, the classical formulation of a first order hetero-

geneous reaction on the boundary is obtained instead of Egs. (1)
and (3):

r =koCas = ke(Ca — Cas)

= KC K= ! + A (8)
- As - ko kc

In local terms, or in terms of a simple electrode, the apparent
kinetic constant and the limit kinetic constant coincide with the
overall constant and the transport coefficient, respectively

k= — =K, k== =k )
=T L= Ch e

and the relationship between the apparent (k), the limit (k)
and the intrinsic (k,) constants, equivalent to Eq. (4), is the well

known

ko/ kL ) (10)

L (
ke \( +ko/ kL)

or, in the form more common in electrochemistry,

j (s L
o= <CAO> exp(Bino) <1 jL> (an

For the simple electrode, according to Eq. (11), the depen-
dence of the intrinsic constant k, on the over-potential can
be obtained from low current measurements (3Jx, <J<J/3),
where Cas=Ca and ko < ki, (negligible diffusive resistances);
in turn, the limit constant can be obtained from high current
measurements, where k, > ki, (negligible reaction resistances).
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Egs. (11) and (10) are different obviously only for the form,
but they correspond to two different points of view, which must
be reconciled in order to appreciate some other fundamental
analogies. In heterogeneous chemical kinetics the constant k,
is considered as a real constant at constant temperature, it is
often considered as not being directly measurable but deducible
from global kinetic measurements (k,) and transport coefficient
evaluations (k). A variable and directly measurable intrinsic
kinetic constant should be automatically felt as strange, even
if, in principle, it could correspond to controlled temperature
changes at the reaction site. On the contrary, in the electrode
analysis, the control of the intrinsic kinetic constant can easily be
obtained through voltage measurements: while k, is still directly
connected to global kinetics, that is the electrode current, k, is a
variable directly connected to the electrode over-potential by a
kinetic equation like the first one in (7) and the measurement of
both allows an evaluation and an analysis of the mass transfer
phenomena occurring at the electrode in terms of the constant
ki, that is the limit current.

After clarifying the different points of view, the analogies
existing between some electrochemical kinetic problems and
some classical heterogeneous chemical kinetic formulations can
be reviewed, so providing wide and well-established literature
references. In particular, the recourse to such analogies in the
averaging operations of complex electrodes often provides the
opportunity for utilising in this case solutions already known in
other contexts. A well known classical example is the analogy
between porous electrodes and porous chemical catalysts [14];
here another analogy will be specifically used, the one between
the kinetic behaviour of a planar electrode of finite dimensions
in contact with a moving fluid and the well-known problem of
diffusion with a chemical reaction at the boundary.

The relevance in terms of applications is confirmed taking
in account that, even if fuel cells usually work at not too high
current density, also under apparently safe conditions a large
part of the cell can locally work in conditions where diffusion
phenomena significantly affect performance [11].

Other analogous approaches that refer to the chemical reactor
theory can be used when the optimisation of the electrode shape
and the flow pattern in an electrochemical reactor are considered.
As examples, the studies of the comparison between interdigi-
tated and serpentine configurations in PEMFC electrodes can be
cited [15,16], a topic which seems to be worth further discus-
sion elsewhere. Here the comparison between a well-mixed and
a longitudinal flow electrode will be discussed in some detail
(see Part 2, Appendix D) and the results of the longitudinal-flow
electrode study will be used in the analysis of MCFC anodes
(see Part 2).

4. From local to global Kinetics

Eq. (11) is valid in local terms, but it is usually extended to
much wider contexts. It is worth exemplifying the conditions
under which it can be correctly extrapolated.

For the whole electrode, the definition of the apparent and
limit constants has to be made in terms of the mean values of
the reaction rate (or current density), obviously with reference

to the inlet concentration:

e — fm J _ KCam
“T Cao nFCao  Cao '
J k.C
kL:VmiL _ L _ KeCAmL (12)

Cao nFCao  Cao

As a consequence, the local Eq. (11) can be quite inadequate
and require a correction. By defining

1 CAm . (fSCA dS)

— = = , A>1 (13)
A Cao (CaoS)

the preceding Eq. (12) can be summarised, for linear kinetics as

=X ok (14)
a = A’ L = AL

Itis useful to compare a complex electrode, working at a non-
uniform composition, with a corresponding simple electrode,
working at uniform concentration Ca,; for the simple electrode
the local Eq. (11) can be written as

1 1+1 1 (1) (ﬂ)-l—l (15)
- =7 T - = | | &Xp(—pn -
K ko ke J Jxo ¢ JL

For a complex electrode, instead of the local constant K, con-
taining the reaction constant k, and the transport constant k,
reference can be made to an averaging operation on the electrode
surface

R . (16)
Aka ko ke ko  ApkL

1 1 1
a7 (j*()) exp(—pno) + AT a7
so that the apparent constant k, and the limit constant &k, can
be connected to local constants through the introduction of the
coefficients A and Ay, which take account of all the effects of a
non-uniform concentration field.

The validity range of Eq. (16) is wider than that of Eq. (15),
butithasits limits. In the first place, as said above, k, must be uni-
form, that is the electrode must be isothermal and efficaciously
de-coupled. In the second place k. must also be uniform: partic-
ular shapes or flow fields can be associated with local differences
in the transport coefficient; this, moreover, can be affected by
local non-linear phenomena such as those connected with the
bulk flow towards the electrode (see Part 2, Appendix E).

However, in many instances, Eq. (16) can be taken as a guide
for a better understanding of some typical operations in the
analysis of chemical and electrochemical reactions. In heteroge-
neous chemical reactions reference can be made to the following
typical identification problems:

e On the local scale, that is when it is possible to work on sim-
ple and uniform systems, the characterisation of the intrinsic
kinetics (kinetic constants and reaction orders) is relatively
easy.

e Onalarger scale, that is in terms of aggregates or reactors, the
characterisation of the intrinsic kinetics passes through a more
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articulated physical-mathematical description of the system:
the global or mean kinetics (k,) are measured, the transport
coefficients (k;) are estimated, the composition fields (A) are
simulated and averaged and the intrinsic kinetics (k,) are,
finally, determined. Only in rare cases the intrinsic kinetics
are already known from preceding measurements on simpler
systems, so that the transport phenomena can be the specific
objective of the identification problem.

When dealing with electrochemical kinetics, the terms of the
discussion remain substantially the same only when the local
scale is under consideration (laboratory systems which can be
considered simple electrodes), but they become rather different
at greater scales (complex electrodes), where the identification
problem involves the measurement of the mean kinetics (J, k,)
and intrinsic kinetics (V, ko) as well as the interpretation of the
limit kinetics (JL, k1) in terms of transport coefficients (k.) by
taking into account the concentration distribution (A, Ar). The
identification problem is often complicated by other unknowns
(symmetry factor S, reaction orders) appearing in the relation-
ship between V and k.

In both cases the preliminary measurements are restricted,
for what is possible, by well-controlled laboratory conditions,
where the identification problem can be simplified by reference
to uniform concentration fields (A =Ar, = 1) and non-controlling
transport phenomena (k. > ko). In both cases the experimenta-
tion, at the laboratory or pilot scale, is then extended to systems
of larger sizes and greater complexity and, finally, the identifi-
cation problems give way to prevision problems, in particular
design problems relating to developmental and commercial pur-
poses, on systems where the approximations under discussion
are nearly always unsuitable.

In other words, and to stress the point, Eq. (16), or, in more
electrochemical language, Eq. (17) shows that the identification
of the global transport coefficient of an electrode, k., requires
a number of operations that are not always straightforward or
certain and, in any case, a non-superficial level of theoretic
analysis.

o In the first place, the identification is possible by means of the
consideration of only one electrode on condition that the other
electrode is working under an approximately uniform voltage
field. When this is not the case, the consideration of only one
electrode cannot be considered significant and the transport
phenomena of the two electrodes cannot be de-coupled.

e In the second place, the experimental work can be done
according to essentially known methods, by achieving cou-
ples of values for the current (J, that is k,) and the voltage (7,
that is, substantially, k).

e Finally, an estimation of the mean electrode concentration
(Cam, that is the parameter A) has to be made for the various
experimental conditions used and, in particular, for the limit
current conditions (Jr, Ar). The evaluation of these means
can be done experimentally, from local concentration mea-
surements taken at various points on the electrode, but an
alternative to this experimental burden can be found in the
calculation, starting with few known concentration values:

usually, the inlet value Ca, and the outlet value (1—u)Cao
are at least known, but employing a simple arithmetical mean,
such as Cam = Cao(1—u/2), may be inadequate.

In addition, particular attention has to be given to the depen-
dence of the transport coefficient on the flow conditions of the
reagent fluid in relationship to the electrode. The effects of the
flow conditions are usually appreciable on all the measured or
estimated parameters, especially the transport coefficients and
the averaging coefficient A. In the simplest cases the flow con-
ditions can be taken into account in terms of a further kinetic
parameter alone, the “flow dynamic” constant

q
kf = S (18)
that is the fluid flow rate per unit electrode surface, to be put
beside the previously considered reaction and transport con-
stants (see Appendix C1).

5. Analysis and correlation methods

The approach discussed here highlights the advantages of a
unique and external reference. This approach will be underlined
in Appendix A.

Some considerations on dealing with the organisation and
the correlation of the experimental results according to what has
been reported in the previous section are presented in Appendix
B. In Appendix C some examples of a theoretical nature are
discussed, with the aim of illustrating the real relevance of the
averaging operations.

In Part 2 of this work different analysis methods will be
discussed in relationship with different experimentation tech-
niques. In addition, concrete examples of their application
to Ansaldo Fuel Cells data will be presented in detail. In
Appendixes D and E of Part 2, moreover, the effects of the flow
field on the electrode performance will be discussed on the basis
of the chemical reaction theory and its classical limit models.
Many more examples could be added, but the ones cited can
be considered sufficient to provide a comprehensive overview
and to draw some conclusions and rules for a more exhaustive
and reliable analysis of the experimental current—voltage data in
terms of diffusive resistances.

6. Conclusions

The analysis of the diffusive resistance is made difficult by
the non-linearity and complexity of the phenomena even at the
laboratory scale.

The problem can be tackled at the experimental level by using
a number of different techniques: differential or finite perturba-
tion methods, constant flow or constant current methods, and so
on. However, the effects of each variation cannot be interpreted
as a simple phenomenon, but the result of at least two factors:

o the local diffusive resistances set and
e the concentration distribution of the electrode.
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The first can only be determined after estimating the second
by means of an adequate physical-mathematical description. To
achieve this it is particularly useful to make recourse to a close
analogy between electrode kinetics and heterogeneous chemical
kinetics with the reaction at the boundary and to use this analogy
within the chemical reactor theory.

As Part 2 will show in detail, this kind of analysis can be
successfully applied to fuel cell experimental data.

Appendix A. Kinetic expressions and reference
conditions

Given the local electrochemical kinetics of the kind

j = kIT;CY exp(Bvs) — K'TLCY expl(B — 1)vs],
VnF
V=
RT

(A1)

which contains the concentrations and the voltage acting on an
electrode point (Cjs, vs) and must satisfy the thermodynamic
consistence conditions

k vi vi
v = IT;C}" exp(—veq) = IT;C}; exp(—ves)

= IT;C}} exp(—ver) (A2)

a reference can be chosen at the equilibrium condition corre-
sponding to an arbitrary composition Cj;

Jur = kIT;C exp(Buer) = K IL,CE expl(B— Dver]  (A3)
so that
' ' Cis al Cis ai+vi
J = Juld; (C1r> exp(Bnr) — I1; (Ctr>
expl(B— Dnel}, e = vs — ver (A4)

In such a way, the local kinetics is written in terms of the
voltage loss in relationship to the equilibrium voltage of the
chosen external reference condition. This advantage has a price:
the local voltage loss in respect to the bulk fluid at composition
C;, with which the irreversible phenomena of energy dissipation
are associated, is different from the one appearing in the kinetic
expression (A.4)

N = Vs — Veq = Vs — Ver + Ver — Veq
C:

— ot Y ()
i C;

As the electrode concentration Cjs and the local concentration
of the bulk fluid C; are connected in transport equations, for
instance under the form

(A.5)

. nkF Vi j
Jj=—kei(C; — Cis)Ta Cis=Ci+——

A.6
i n Fke; ( )

in Eq. (A.4) the concentration difference due to mass transfer
can be taken into account in terms of the transport coefficient k;

or in terms of limit currents, with reference to local conditions
(jLi) or to reference conditions (jir;)

. nF . nF
Jui = —kiCi—, Jii = —keiCir— (A7)
Vi Vi
yielding
%_QO+ W>_QW_Q_1
Ci Ci nFke;C; Cii  nFkiiCir  Cir JjLi
(A.8)
and
e vij 1™
/ el [Cir nFkeCiy
C vij "
e 1-1I;|— 4+ —— exp(— A9
xp(Bnr) { i |:Cir 1nFkCyr Xp(—17r) (A.9)

Besides the reaction order (o;) and the other coefficients of
a stoichiometric nature (v;, ), this final form of the kinetic
expression (A.9) contains

e the reference composition Cjy;

e the exchange current jx; at the reference composition;

e the transport coefficient between the fluid and electrode k;
or, alternatively, the limit current ji ,; at the reference compo-
sition;

e the voltage loss 1, in relationship to the reference equilibrium;

e the local composition C;.

In particular, in many instances, the variable 1, can be con-
sidered uniform on the electrode while, on the contrary, the local
variable n surely is not. Moreover, the non-uniform concen-
tration variable C;, in many cases of practical interest, can be
expressed through the definition of a unique degree of advance-
ment

Ci = Cir(1 + vix) (A10)
or the utilization factor of a key reagent A
Ca=Canll—w),  Ci=Ci- (;\) Cat (AN

Therefore, Eq. (A.9) is equivalent to a kinetic function, at con-
stant temperature and voltage, depending on an advancement
variable alone (x or u).

An electrode can be defined “simple” if all the local variables
(T, P, nr, x) are independent of their position, that is each assumes
a unique uniform value on the electrode. For many complex
electrodes, especially at the laboratory scale, the temperature,
the pressure and the voltage can be still assumed to be uniform,
while the composition (degree of advancement) cannot.

Itis worthwhile commenting further on the electrode voltage.
At uniform temperature and pressure the two coupled elec-
trodes have, at least at the laboratory scale and with a reasonable



P. Costa, B. Bosio / Journal of Power Sources 172 (2007) 334-345 341

approximation, equal current and a uniform voltage difference:

/ jnr, 1) dS = / J G x)dS',
S S’

(Js =J's, e + 1, = cost (A.12)

When one of the electrodes is considered to be simple (for
instance the one marked with the apex), the uniformity of 7,
implies the uniformity of n; on the other electrode, although it
is not considered simple. In such cases, electrode kinetics of the

type
J=fx)

allow the extension of many of the identification, design and
optimisation procedures of the classical theory of isothermal
chemical reactors to electrochemical reactors.

According to Eq. (A.9), a particularly simple and interesting
case to analyse as a reference example is the one regarding a
unique limiting reagent A, with reaction order and stoichiomet-
ric coefficient equal to unity (o = —va = 1). Then the kinetic
expression becomes

(A.13)

. Jsr €Xp(B1r) J

= |22 e — -C - A.14
J { Cne } { A= Fh, Ar €Xp(—17r) ( )
and, if
Cae = Car exp(—1yr) (A.15)

is the concentration at which the reagent fluid is in equilibrium
under a given over-potential 7y, the electrochemical kinetics can
then be reduced to simple linear kinetics

. Jxr €Xp(Bnyr) J
= || [CA—Che = —— A.16
/ |: Car :| |: A Ae nkFke ( )
By putting
R A _ Jur exp(Bmo)
nF’ (Ca — Cae)’ nFCay
(A.17)
Eq. (A.15) becomes simply
I
r=K(Ca — Cae), K=|—+— (A.18)
ko ke

A similar result can also be achieved when more complex
kinetics are considered. For instance, if two or more reagents
and non-linear dependences are involved, an expression just like
the preceding is derived in the range of validity of a linearisation
of Eq. (A.9) for low utilisation factors (¥ < 1) and low currents
(J K JLri)-

Appendix B. How to determine the complexity

When the intrinsic kinetic constant k, increases, the appar-

ent kinetic constant k, is limited by the limit constant kf,

(0 <k, <kt). Therefore, both variables

(B.1)

Y:M, O<Y<1

e (B.2)

can vary in the range between zero (k,=k;=0) and unity
(ko > ki ka=kp).

In local terms, or for a simple electrode with linear kinet-
ics, the limit constant coincides with the transport coefficient
(kr, =k¢) and the apparent constant depends only on the intrinsic
constant and the transport coefficient (1/k, = 1/K=1/k, + 1/k.),
so that between X and Y the simple relationship
Y=X (B.3)
exists, that is equivalent to Eq. (15) and in an XY plot this
corresponds to the square diagonal.

On the contrary, for a complex electrode, with linear kinetics,
the composition distribution on the electrode, with Ca < Cao,
implies that the apparent constant as well as the limit con-
stant is less than the respective reference values (ki < kc; ky < K).
Therefore, Eq. (B.3) must be correct, for instance in the form

Y (kc - kL)

kr,
}—1 - fe(X), Je= +(1 - A)k— >0 (B4

kC 0
that is equivalent to Eq. (16).

When the corrective function f; is null for all the values of
ko, Egs. (15) or (B.3) are recovered, while Eq. (B.4) with f, >0
corresponds to a curve which is under the diagonal as much the
non-uniformity of the diffusive phenomena taking place at the
electrode is important.

Of greater interest are the asymptotic solutions to which Egs.
(16) and (B.4) degenerate at the extremes of the range. At one
extreme, in the field of low currents, a proportionality between
X and Y can be assumed
Y

ko < ki, Y =coX, co=I1im []
X X—0

and the value of the constant ¢, can be obtained as an asymptote
of the experimental XY plot or in terms of the derivatives of k, in
relationship to k. If X=Y =0, ko/k, = 1 and dk,/dk, also=1. In
the neighbourhood of this point the difference between k, and
ko is only appreciable in terms of the second order derivative,
thatis k, = ko + (d%k,/dk2) k2 /2. Therefore the proportionality
constant is

ke \ [ d*k,
Co=—| —
¢ 2 )\ dik2
ka=ko

1 dA
=+kL<) v Jeo=(0=co)
ka=ko

(B.5)

(B.6)

At the other extreme, in the high current field, the propor-
tionality can be assumed to be between 1—X and 1-Y

ko > ke, I -Y =c.(l - X),

(B.7)
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and the proportionality constant s

K
L= ———"7-—
(K2dka/dko)  _j.
= AL+ (1/k)KZA /o) | o S == 1)
(B.8)

as k, becomes indistinguishable from kg, for high, even if finite,
values of k,, the limit of k(z)dka /dk, for ky =k, is often zero and
cL, diverges, that is the function Y(X) tends to the vertical X=1.

Another parameter which can generally express the differ-
ences between Egs. (B.3) and (B.4) is the size of the belly of
the curve, as measured by the segment on the other diagonal
(Y=1—X; ko = k) of the square, between the diagonal crossing
and the intersection with the curve. The length dy of this segment
is

W2/ f

(2= fe#)
where f.# indicates the correction in Eq. (B.4) for ko =k.
Obviously, when Eq. (B.3), thatis Eq. (11), is correct, the con-

stants assume the reference values corresponding to the principal
diagonal Eq. (B.3):

dy (B.9)

co=1, =1 dy=0 (B.10)

whereas when there is some shifting from the diagonal, the
constants will, in most cases, be Egs. (16) and (B.4):

c < 1, cL > 1, dsz >0 (B.11)

The low current constant ¢, is particularly important for the
proper characterisation of an electrode, as it directly modifies
the linear current—voltage relationships of type (5).

Appendix C. Some examples

The real relevance of the asymptotic constants ¢, and cf, can
be illustrated by reporting some significant examples.

C.1. Stirred electrode

A first, very simple, example regards the behaviour of one
well stirred electrode to which the reagent fluid is continuously
fed, so that a unique value of concentration Cp is sufficient
to describe its steady condition (open system with concentrate
parameters, or continuous stirred tank reactor, CSTR). So, the
local condition is described by Ca, while the inlet concentration
is Cao, Which is connected to the former by the balance equation

KC kf =
kf As f_S

and the flow dynamic constant k¢, (volumetric flow rate supplied
to the electrode per unit active surface).
Interms of the electrode concentration, according to Eq. (C.1)
_ Chao
(1 + K/kr)

Cao—Ca = (C.1)

Ca (C2)

the apparent constant referring to the inlet concentration
ka=KCaA/Cpo is then

ky = K —<1+1+1>1 (C3)
VKK \ko ke ke '
and corresponds to an averaging coefficient
K
A=1+— (C4)
kg

Eq. (C.3) seems different from Egs. (10) and (11), at least
because of the flow constant k¢. In fact, if the discontinuous
concentration drop from inlet Ca, to internal Cp is taken into
account, the electrode should be classified as “complex” and
behavioural differences are to be expected when it is compared
with the simple electrode at uniform Ca,: the X-Y trends of a
stirred electrode with the position kp, =k, typical for the simple
electrode should be represented by a family of straight lines with
increasing slope with increasing k¢. Nevertheless, from another
point of view, the stirred electrode can be considered “simple”
because all its surface points work at uniform concentration Cx.

In order to reconcile the two antithetic positions it is sufficient
to observe that, in the absence of reaction resistances, the limit
constant is

11\
kL={—+— CS5
- (kc * kf) ( )
which is equivalent to
k
AL =142 (C.6)
k¢

and also depends on k¢; in such a way it is possible to re-obtain
Egs. (10) and (11) through the elimination of k. in Egs. (C.3)
and (C.5).

Egs. (C.3) and (C.5) come from definition (12). In other
words, the validity of Eq. (11) is extended thanks to defi-
nition (12) of the apparent and limit constants, a definition
that has been stated in direct agreement with the experimental
evidence.

However, it is worth noting that the simple identity between
the transport coefficient and the limit constant in the second
equation in (9) is not adequate any more, while the valid position
has become the more complicated Eq. (C.5), in which the “flow”
constant kg is also considered in order to take into account the
limits imposed on the electrode current by the amount of reagent
at its disposal. Obviously, only if the link between k., and k is
known, for instance the one in (C.5), Eq. (10) or (11) makes it
possible to analyse the experimental results on the limit current
(kp) in order to achieve a reliable characterisation of the transport
phenomena (k).

C.2. Longitudinal flow electrode

A second example, which is apparently just as simple as the
preceding, but able to highlight the possible difficulties of the
problem, regards a planar electrode in contact with a longitudi-
nally flowing and transversally well mixed fluid: it is the system
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characterised by a piston flow, that is the one defined as an ideal in (C.12) are almost always close to the reference ones in (B.10):
tubular reactor (or plug flow reactor, PFR) in the chemical reac- in such instances Eq. (11) is substantially acceptable for all the
tor theory. Under stationary and constant flow rate conditions, values of k,, that is the voltage, and the electrode behaves as a
the differential mass balance along the axial coordinate z, written simple one.

in terms of the utilisation factor
kedu' = K(1 — u')de, =0 u' =0, =1

w=1 = k= (
allows the integral

K = —k¢ In(1 — u)

and the limit condition

ke = —kg In(1 — up)

Moreover, it is

kfu = ky, ki = upLkr

u =u
1 N 1\ ! (C.7)
ko = ke

Just this kind of consideration, on the other hand, diverts

(C.3) attention from the circumstances in which the Eqgs. (C.12) are
more pertinent, so impeding a full appreciation of their role in

possible malfunctions, often not foreseen nor suspected, in a par-

(C.9) ticular region of a cell or stack, at the commercial or laboratory
scale. In fact, even if usually the operative conditions involve a

current decidedly lower than the limit one in terms of average

(C.10)  values, some section of a cell can really work under conditions
very close to the limit current and the complete exhaustion of

and, by combining Eqs. (C.8)—(C.10) with the last equation in  the reagents.

(C.7) the variable X and Y are obtained in terms of the variable
u used as a parameter

ka u
X = k— = — 0.9 4
b UL 1 1 (C.11) 08 1
Y=1-2=14uX — 07
ko In(1 —upX) In(1—ur) L, 06+
(2]
This time the similarity between the second equation in = 051
(C.11) and Eq. (11) is only very partial. Obviously both equa- 3 0.4
tions, thanks to the way they have been constructed, allow the 0.3
limits where the reaction (k, =0 for k, < k) or the transport 0.2 A
(ka =kt for ko, > ki) is controlling, but the characteristic con- 0.1
stants of the curve (B.4) 0 : . . : ;
0 5 10 15 20 25 30
ky\ (ke + 2ks) Kelks
=\ k) 2%
f 5 ¢ Fig. C.1. Longitudinal flow electrode. The asymptotic constants ¢, and 1/cy, as
ki k¢ a function of the rate k./ks.
c,=|— —_— (C.12)
ke (ke — ki)
2ky — k 1
d# _ \/2 |:( a L)]
kLo D=k
depend on the ratio k./kr (see Figs. C.1 and C.2) and assume the 0.8 1

values (B.10) only in the trivial case in which the flow constant
is quite non-limiting, or non-influencing (kf >> kr.). Under such

conditions the amount of the fed reagent is much more than 06 1
that consumed (very low utilisation factors) and the reagent é;
concentration is almost uniform along the length of the elec- e 04

trode, so that the whole electrode behaves as a simple electrode
(Ca=Caop).

Under the contrary conditions, when the amount of the
inlet reagent becomes controlling (k¢ < k1), the characteristic
constants (C.12) approach the limit values ¢, =1/2, 1/c =0,
respectively, and Eq. (C.11) tends to degenerate into kn/kr, =1, 0

0.2 A

which is quite different from Eq. (11).
A first comment, of a reassuring nature, could be that a

deliberate choice of flow-controlling conditions (kf <kc) is very Fig. C.2. Longitudinal flow electrode. XY plot for different values of the ratio

0.2 0.4 0.6 0.8 1
Kalky

unlikely, so that the values assumed by the asymptotic constants kc/ke. The diagonal represents the simple electrode.
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Moreover, and it is perhaps the most important point, the first
equation in (C.12) stresses the necessity of using a corrective
C, constant different from unity in the interpretation of many
experimental results, even if they are obtained under low current
conditions.

C.3. Diffusive electrode under uniform velocity

Another example, which is particularly relevant for polymeric
membrane fuel cells in their special interdigitated or serpentine
flow configurations [15], is the that of a planar electrode in con-
tact with a fluid flowing over its surface with a uniform velocity
field. This uniformity is typically due to a porous medium (Darcy
flow) and the reagent can reach the electrode exclusively through
a diffusive path orthogonal to the electrode direction. If v is the
velocity, s the thickness of the porous medium and L its length
and reference is made to the pellicular regime where the resi-
dence times L /v are much lower than the diffusion times s2/D A
the mean electrode current can be evaluated by integrating the
partial derivative system

aCa 92Ca
— =DpA—— C.13
v 9z A dy? ( )
7=0, Ca =Cao (C.14)
aC
y=0,  —Dp—2 =kCa (C.15)
dy
DAL 1/2
y —> o0, I Ly<s|, Ca=Cao (C.16)

In particular, the last boundary condition corresponds to the ref-
erence to a semi-infinite medium, which is fully coherent with
the pellicular regime assumption.

The operations of integration and calculation of the mean flux
towards the electrode, after having defined the flow dynamic and
transport constant as

vs Da ke
ki = —, ke = —2, -~ 1 C.17
f I c s (kf < > ( )
yield [16,17], for the apparent constant,
dkeke\ V2
ka _ < f c)
b4
e () o [
— 1 —ex erfc | ——— C.18
ko P\ keke (kekp)72 (C.15)

When ko/(kcke) /2 3> 1 (transport controlling) the preceding Eq.
(C.18) can be written

Ak \ V/?
kL:( fc)
T

so that, by eliminating k. between Eqgs. (C.18) and (C.19)

k2 4k2 412\ '
ky = ki, — L 1 —exp| —2 |erfc 9
e T <4ko> { p(nkﬁ) [(nkﬁ)

(C.20)

(C.19)

The characteristic asymptotic constant can so be obtained
from Eq. (C.20) so that

8
0o = — = 0.849
co 3
i 4
cL = p =1.274 (C21)

0= (2) [ (5) - (Don (3 me(2) ] o

where the asymptotic solution with controlling kinetics
(kolke < 1) requires a series expansion of both the exponen-
tial and the error functions, while for the transport controlling
solution (ko/k;>>1) the well known approximation exp(xz)
erfc(x) & 1/(4/mx) for x> 1 is sufficient.

It is worth noting here that a non-controlling feed rate con-
dition is encountered (k./kf << 1), where the reference values
(B.10) should be expected to be correct, while Eq. (C.21) and
Fig. C.3 show the necessity of a certain, non-negligible cor-
rection. In particular, the first equation in (C.21) indicates that
the simple electrode solution needs a correction by means of a
coefficient ¢, less than unity even in the low current field.

Naturally, Eq. (C.18), as well as the other derived Eqgs.
(C.19)—(C.21), fail when the feed-rate limitations begin to act,
that is the ratio k./kr increases until it becomes comparable with
or even greater than unity. The complete solution for all the
values of k./ ks = DAL/ vs? can be found in specialised books
[17]; here it is sufficient to note that for k./kf>> 1 the semi-
infinite layer hypothesis is no longer realistic and the diffusion
acts throughout all the layer thickness, so that other solutions
become sufficiently accurate instead of the one presented in this
section, for instance those discussed in [16] or that of the pre-
ceding section for a transversally well mixed flow. For instance,
Eq. (C.18), just as in the preceding example, also tends to finally
be reduced to

ke/ki> 1, ko> ke,  ka=hki = ke (C.22)

0.5

0.4

0.3

kalko

0.2

0.1 4

0 T T T T
0 0.1 0.2 0.3 0.4 0.5

ka/k

Fig. C.3. Uniform velocity electrode. XY plot for kc/ks < 1.
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0.8 4

0.6 4

1-kalko

0.2 4

0 T T T T
0 0.2 0.4 06 0.8 1
kalke

Fig. C.4. Porous electrode, local behaviour. XY plot for spDaeff/Sex Daex = 3.

C4. Alocal example

The examples in subsections C1 and C2 refer to effects at
the electrode scale, for instance a “postcard” laboratory elec-
trode. In subsection C3 attention is shifted to a level which is
more properly classifiable as an aggregate scale: for instance,
the considered flow pattern interests a small porous region,
1 or 2mm in length and one or two tenths of a millimetre
in thickness, between two adduction channels of an interdig-
itated PEMFC. However, in all these examples, the diffusion
and reaction paths are considered to take place strictly in
series.

On the other hand, from a local point of view, the porous
structure of an electrode may act by combining diffusion and
reaction in a series-parallel mechanism. Here the scale consid-
ered is the one of the thickness of an electro-catalytic layer, that
is, typically, less than 100 pm.

In such instances, a rough and non-univocal local description
can do reference to an external diffusive layer, corresponding to
the external transport coefficient

D Aex

(C.23)

kcex =
Sex

and to an internal reaction affected by diffusion, which can be
treated in terms of the effectiveness factor ¢ and the Thiele

module @

tghd Ka \'?
koeft = ko = ké)apspfﬂ, Q= o b = Sp<D: 0
€

(C.24)
The apparent constant is then
t_1 + ! kL =k (C.25)
ka = ko(P kL’ L — Kcex .

and, between the low current range, where kinetics is controlling
(ky = ko), and the high current range, where the external transport
is controlling (k, = k1), there may be an intermediate range where
both internal diffusion and reaction act through the geometrical
mean k, = (koD acit/s) 2.

Moreover, due to the series-parallel mechanism, the sum of
the diffusive resistances decreases with increasing current, so
that the X-Y plot lies over the square diagonal (see Fig. C.4).

Such effects will combine with the effects acting on the other
scales, so that an exhaustive separation and identification of the
various effects could prove to be extremely difficult.
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