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bstract

This work proposes the use of a rigorous approach to the analysis of the fuel-cell diffusive resistances not only at the commercial scale, but also
t the laboratory one. The attention used experimentally for checking diffusion resistances in electrodes, cells and stacks should imply the same
ttention in the corresponding data analysis techniques.

For this reason, some corrections to the most common interpretation and correlation procedures have been introduced on the basis of the study

f complex electrodes and comparing these ones with simple ones.

In Part 1 of this work a theoretical discussion of some simple reference cases will be reported. In Part 2 some examples of applications to the
nterpretation of the experimental data will be given.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The experimental analysis of heterogeneous kinetics is based,
n the one hand, on very sophisticated measurement methods
hile, on the other, it often uses simplified methods for the

nterpretation of the results. In particular, for electrochemical
inetics, this involves the analysis of the complex electrodes
orking on non-uniform concentration fields: the current–
oltage experimental results are often just interpreted in the same
anner as those of the simple electrodes, that is in terms of two

arameters only, the exchange current and the limit current, and
ithout any particular attention to the effects of the geometry,

he flow pattern and the consequent distribution of concentration
n the active surface.

The complexity of cells and stacks at the commercial scale
s well known: ever more detailed and analytical answers to

he problem can be found in detailed simulation tools [1–7].
ut the detailed models often use data from laboratory-scale
easurements [8,9], whose interpretation can be affected by the
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carce consideration of the complex phenomenology that also
xists at relatively small scales. For this reason, a brief review
f the recent history of applied research on fuel cells could
e useful: in research laboratories, and specifically industrial
nes, attention is being shifted more and more frequently from
entimetre cell sizes (“postage stamp” scale) to decimetre cell
izes (“postcard” scale). The traditional methods for analysing
he electrochemical kinetics, which have been elaborated for
he smaller scale and applied to it with considerable success,
re often too simplified for the larger scale, where the unifor-
ity hypothesis (simple electrodes) is very often inadequate.

n brief, the transition from the postage stamp to the postcard
cale requires some changes in the handling of the laboratory
ata.

Similar situations, where the points of view can be articulated
t a local level, or scale, an aggregate level and a macroscopic
evel, have been encountered in many different applicative fields,
ut perhaps the relationships between the levels have been better
tudied and understood for the heterogeneous chemical reactions

f traditional chemical engineering (catalytic or non-catalytic
uid–solid reactions, fluid–fluid reactions, slurries, trickle beds,
tc. [10]). From this wide scenario of cases, which are, for the
ajor part, well established in the field of chemical engineering,

mailto:barbara.bosio@unige.it
dx.doi.org/10.1016/j.jpowsour.2007.04.064
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Nomenclature

A corrective coefficient, from the averaging opera-
tion (–)

co see Eq. (B.5) (–)
cL see Eq. (B.7) (–)
Ci volumetric concentration of the component i

(kmol/m3)
d# see Eq. (B.9) (–)
DA diffusivity (m2/s)
fc see Eq. (B.4) (–)
F Faraday’s constant (A s/mol)
j current density (A/m2)
J mean electrode current density (A/m2)
k, k′ kinetic constants (depending on the reaction

orders)
ka apparent kinetic constant (m/s)
kc mass transfer coefficient (m/s)
kf flow dynamic coefficient (m/s)
ko intrinsic kinetic constant (m/s)
K global kinetic constant, local value (m/s)
L length (m)
n stoichiometric coefficient for electrons, absolute

value (–)
q volumetric flow rate (m3/s)
r reaction rate, per unit surface (kmol/m2 s)
rL limit reaction rate (kmol/m2 s)
rm mean reaction rate (kmol/m2 s)
R gas constant (j/mol K)
s thickness (m)
S electrode surface (m2)
T absolute temperature (K)
u utilisation factor (–)
v velocity (m/s)
� (in Appendix A) adimensional voltage (–)
V voltage (W/A)
x reaction rate (kmol/m3)
X see Eq. (B.1) (–)
y spatial coordinate, orthogonal to the electrode (m)
Y see Eq. (B.2) (–)
z spatial coordinate, parallel to the electrode (m)

Greek symbols
αi reaction orders, direct reaction (–)
βi reaction orders, inverse reaction (–)
β symmetry factor (–)
η a-dimensional voltage loss (–)
ϕ effectiveness factor (–)
Φ Thiele modulus (–)
νi stoichiometric coefficient (–)
ζ adimensional axial coordinate (–)

Apexes and indexes
A key reagent (hydrogen at the anode, oxygen at the

cathode)
c concentration

eff effective
eq equilibrium
ex external
i generic component
L limit
m mean value
o inlet
r reference
s electrode surface
* exchange
# refers to the shifting from the diagonal of Eq. (B.4)
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′ refers to the other electrode

ome useful approaches can be drawn for an analogous study of
any cases of electrochemical interest.
In analysing complex electrodes, overcoming any immedi-

te and substantially semi-empirical and superficial approach
equires an advanced study of the transport phenomena of
omentum, mass, heat and charge and the real electrode geom-

try and structure, so that non-trivial physical–mathematical
imulation approaches and their related numerical tools are nec-
ssary at the laboratory scale [11]. In other words, a wider point
f view is needed, through which, on the one hand, the level
f complexity necessary and sufficient for a good analysis of
set of experimental data can be determined and, on the other
and, the correct formal analytical tools, at the proper level of
implification, can be found.

Of particular interest, and particular difficulty too, is an anal-
sis that highlights the behaviour of a single electrode of a couple
f complex electrodes. In such cases it is necessary to maintain
he behaviour of the second electrode constant and uniform,
pproximating the behaviour of a simple electrode, so that it can
e considered non-influential, while attention is concentrated on
he protagonist electrode.

When this de-coupling operation succeeds one electrode can
e usefully studied using the standard methods of the chemical
eactor theory and the local electrode kinetics can be more eas-
ly determined. On the other hand, the results of these kinds of
pproaches should often only be considered as orienting, while
n effective and quantitative kinetic characterisation requires the
ontemporaneous consideration of both the coupled electrodes
nd their complexity in terms of velocity and composition fields,
hat is the use of complex physical–mathematical models at the
aboratory scale. The use of detailed models is always neces-
ary, in particular, when the thermal regulation is not completely
ffective, so that the temperature field cannot be considered
niform.

Simpler cases are encountered when the experimental inves-
igations use perturbation methods, that is transient conditions
ollowing variations, often very little variations, in some opera-

ive condition such as temperature, composition, velocity and so
n. Some authors [12,13] have successfully used flow rate and
omposition perturbations on the electrodes of a molten carbon-
te fuel cell to characterise the diffusive limits of the anode and
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athode. This technique is now under discussion as a system-
tic diagnostic instrument for Ansaldo Fuel Cells’ experimental
ells. In the second part of this paper some preliminary data
f this kind will be reported and analysed and the difficulties
ncountered in the interpretation will be underlined: in fact,
hen the variations are large enough to produce clearly mea-

urable effects, they are often out of the linear range. Moreover,
imilar methods could be useful in the development of poly-
eric membrane fuel cells, for instance the ENEA PEMFCs, as

iscussed in the following chapters.
Passing from a theoretical discussion of some simple ref-

rence cases (Part 1) to some examples of their application
o the interpretation of experimental data (Part 2), this work
ntends to recommend a rationalisation and generalisation of
he approach to the analysis of the diffusive resistances at the
aboratory scale. In this way, an improvement in the diagnostic
xperimental methods can be attained for different applicative
ectors and, in particular, more precise and reliable results in the
haracterisation of different kinds of fuel cell electrodes.

Finally, it is to be underlined that the point of view considered
n this work is typical of an engineering approach: as chemical
ngineers start from a known intrinsic chemical kinetics and
ork on it considering, in particular, mass, heat and momentum

ransport phenomena on both the aggregate level (e.g. solid par-
icles, drops, bubbles) and the reactor level, similarly a known
ntrinsic electrochemical kinetics is here assumed (e.g. the Tafel
quation) and then the effects of transport phenomena on the
lectrochemical kinetics are discussed. As said, on the commer-
ial scale, mass and heat transport is fully relevant and have to be
aken into account by means of detailed physical–mathematical

odels; on the laboratory scale the attention must be focused
ainly on mass transport phenomena, as isothermal conditions

re granted. At both scales momentum transport phenomena
re generally less important in fuel cell electrodes, as laminar
egimes at high Peclet numbers are involved. Intrinsic electro-
hemical kinetics is not discussed at all. This term, summarizing
number of complex molecular phenomena on a very small scale

transport through the ionomeric layer, activation steps, molecu-
ar electrochemical mechanisms, and so on), is here schematized
y means of a relatively simple relationship. On the contrary,
mphasis is given to the question of the reference conditions for
he electrochemical kinetics: this is a relevant point in practical
pplications because the choice of an external reference allows
o write a more explicit and univocal kinetic expression being
ependent on the reaction advancement.

The usefulness in this research field of an engineering
pproach well established in chemical engineering procedures
an be further underlined. Researchers starting from more spe-
ific electrochemical studies could found in this similitude some
echnical suggestions, while chemical engineers could start from
ere to fully recognize electrochemical processes as integrant
art of their field of study. The following sections would give
ome attention to this ambitious aim; also for this reason the

iscussion is maintained, especially for the Part 1, at a general
evel, without a specific reference to a particular kind of fuel
ell or electrode and following an analytical approach to focus
ttention on these basic concepts.
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. Local diffusive resistances

Fuel cell electrodes are open systems in which a neutral
eagent A, e.g. the hydrogen at the anode, must migrate from
he gaseous phase to the reaction place. The use of Tafel’s equa-
ion for the electrode current is standard practice, but it is well
nown that attention has to be given to the concentration effects
f neutral reagents and to the choice of the reference conditions.
or a “simple” electrode, defined in terms of uniform tempera-

ure, voltage and concentrations, the choice of the reference is
bvious; on the other hand, for a complex electrode, that is a
non-simple” one, at least in terms of a non-uniform composi-
ion field, the exchange current and the equilibrium voltage are
ocally related to the composition Ci, as well as to any other dif-
erent reference composition Cir, for instance the composition
io of the inlet gas, with particular attention to the concentration
Ao of the key reagent A. It is necessary, moreover, to assume

ome kind of dependence, for instance a simple proportionality,
etween the exchange current and the concentration CAs close
o the electrode.

The choice of a reference condition is a delicate question
hat is very often underestimated and neglected. Further details
re reported in Appendix A. Here it should be noted that the
hoice of a unique reference composition for all the points of an
lectrode, under uniform temperature and voltage conditions,
akes it possible to express the local current density, that is

he local reaction rate for unit surface, merely as a function
f the composition (or the concentration of a key reagent, or
he utilisation factor in relation to the key). The choice of a
nique reference condition can be extended, when needed, to
he electrode where the temperature and/or the voltage are not
niform.

It is worth noting, in particular, that the uniform voltage
ypothesis implies a good de-coupling operation with respect
o the other electrode: the corresponding total voltage losses are
onsidered uniform or, at least, their distribution is assumed to
e close to the mean value. On the contrary, in many instances,
nly the total voltage difference between the two electrodes can
e assumed to be uniform, while the voltages of the electrodes
re both non-uniform. Therefore, the de-coupling hypothesis has
o be a priori deeply discussed and carefully a posteriori verified
efore judging the significance and the reliability of a single
lectrode analysis.

The choice of a unique and “external” reference, if coherent,
an be of particular aid: for instance, when the inlet gas compo-
ition is chosen as the reference for both the reaction kinetics and
he reaction rate and a linear and irreversible kinetic function,
o simplify the discussion, is assumed, then the local electrode
inetics can be written as follows (see Appendix A)

= j∗o

(
CAs

CAo

)
exp (βηo), ηo = (V − Veqo)

nF

RT
(1)
here ηo expresses the electrical voltage difference between
he electrode working under steady state conditions and a ref-
rence electrode under equilibrium conditions at the reference
oncentration CAo. The extension to linear reversible kinetics
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s straightforward, the extension to non-linear kinetics is only a
ittle more complex.

In Eq. (1) allowance must be made for the mass transfer resis-
ances between the bulk fluid at concentration CA, and the fluid
t concentration CAs close to the electrode, by expressing the
atio CAs/CA in terms of the limit current, that is the maximum
iffusive flux of the limiting reagent

L= kcCAnF, jLo = kcCAonF, j = kc(CA − CAs)nF (2)

In such a way the local electrode kinetics can be written

= j∗o

(
CA

CAo

)(
1 − j

jL

)
exp(βηo)

= j∗o

(
CA

CAo
− j

jLo

)
exp(βηo) (3)

The second equation in (3), in particular, demonstrates that
he local current density only depends on the local composi-
ion. In the equations in (3) it is explicitly considered that the
lectrode can be locally in contact with a bulk fluid at a con-
entration CA < CAo; in turn, the concentration CAs < CA close
o the electrode can be even lower due to diffusive resistances
ssociated with the current. The voltage losses become negli-
ible at very low currents and the reference concentration, but
hen the low current condition is stressed the equations in (3)

end to fail because they neglect the reversibility of the reaction.
n the other hand, they are sufficiently general and reliable for
any practical purposes and they are useful in a discussion of

he role of transport and flow phenomena in the performance of
he electrode. As said above, the extension to more complicated
inetics is only a matter of form.

For complex electrodes working with a continuous reagent
ow, CA and CAs are local values depending on their position.
n such instances, the use of the local reference CA

= j∗
(

1 − j

jL

)
exp(βη), η = (V − Veq)

nF

RT
(4)

eads to a kinetic expression that is only apparently simpler than
he second equation in (3). In fact, in Eq. (4) the parameters j*, jL
nd η are all local variables, depending on their position, while
n the second equation in (3) the local current density depends
nly on the local concentration CA. Of course, in both cases the
urrent density J referring to the whole electrode corresponds to
n averaging operation on the electrode surface.

However, when the operating current is much lower than
he limit current (for instance 3j*o < j < jL/3), the concentration
olarisation, according to an acceptable approximation of the
rst equation in (3), can be assumed to be proportional to j/jL,

o ≈
(

1

β

)[
ln

(
j

j∗o

)
− ln

(
CA

CAo

)
+ j

jL

]
(5)

oc ≈ j = cost. j
(6)
βjL CAkc

This circumstance allows a simple and direct interpretation of
oltage–current measurements, in order to evaluate the effects
f mass transfer resistances. In particular, when perturbation

b
w
i
m
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ethods are used under constant current constraints [12], any
c variation can be directly detected in terms of the electrode
oltage. However, Eqs. (5) and (6) only have local validity and
re valid for the whole electrode only in the case of a simple
ne, while the extension to non-uniform composition electrodes
equires an averaging procedure.

Moreover, (5) demonstrates that the local voltage loss is
artly imputable to diffusive effects (CAs < CA) and partly to
non-uniform composition field (CA < CAo): the measurement
f ηo and its variations cannot be directly connected to the dif-
usive resistances unless there is information available to allow
ppropriate corrections to be made to the results in terms of
on-uniform concentration fields.

. The analogy with heterogeneous chemical kinetics

If, for simplicity, the discussion is limited to irreversible linear
inetics and the following definitions

o =
(

j∗o

nFCAo

)
exp(βηo), r = j

nF
(7)

re used, so that an “intrinsic” kinetic constant ko of the elec-
rochemical reaction is defined as a function of the electrode
ver-potential, the classical formulation of a first order hetero-
eneous reaction on the boundary is obtained instead of Eqs. (1)
nd (3):

= koCAs = kc(CA − CAs)

= KCA, K =
(

1

ko
+ 1

kc

)−1

(8)

In local terms, or in terms of a simple electrode, the apparent
inetic constant and the limit kinetic constant coincide with the
verall constant and the transport coefficient, respectively

a = r

CA
= K, kL = rL

CA
= kc (9)

nd the relationship between the apparent (ka), the limit (kL)
nd the intrinsic (ko) constants, equivalent to Eq. (4), is the well
nown

ka

kL
=
(

ko/kL

(1 + ko/kL)

)
(10)

r, in the form more common in electrochemistry,

ka = ko

(
1 − ka

kL

)
,

j

CA
=
(

j∗o

CAo

)
exp(βηo)

(
1 − j

jL

)
(11)

For the simple electrode, according to Eq. (11), the depen-
ence of the intrinsic constant ko on the over-potential can

e obtained from low current measurements (3J*o < J < JL/3),
here CAs = CA and ko � kL (negligible diffusive resistances);

n turn, the limit constant can be obtained from high current
easurements, where ko � kL (negligible reaction resistances).
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Eqs. (11) and (10) are different obviously only for the form,
ut they correspond to two different points of view, which must
e reconciled in order to appreciate some other fundamental
nalogies. In heterogeneous chemical kinetics the constant ko
s considered as a real constant at constant temperature, it is
ften considered as not being directly measurable but deducible
rom global kinetic measurements (ka) and transport coefficient
valuations (kc). A variable and directly measurable intrinsic
inetic constant should be automatically felt as strange, even
f, in principle, it could correspond to controlled temperature
hanges at the reaction site. On the contrary, in the electrode
nalysis, the control of the intrinsic kinetic constant can easily be
btained through voltage measurements: while ka is still directly
onnected to global kinetics, that is the electrode current, ko is a
ariable directly connected to the electrode over-potential by a
inetic equation like the first one in (7) and the measurement of
oth allows an evaluation and an analysis of the mass transfer
henomena occurring at the electrode in terms of the constant
L, that is the limit current.

After clarifying the different points of view, the analogies
xisting between some electrochemical kinetic problems and
ome classical heterogeneous chemical kinetic formulations can
e reviewed, so providing wide and well-established literature
eferences. In particular, the recourse to such analogies in the
veraging operations of complex electrodes often provides the
pportunity for utilising in this case solutions already known in
ther contexts. A well known classical example is the analogy
etween porous electrodes and porous chemical catalysts [14];
ere another analogy will be specifically used, the one between
he kinetic behaviour of a planar electrode of finite dimensions
n contact with a moving fluid and the well-known problem of
iffusion with a chemical reaction at the boundary.

The relevance in terms of applications is confirmed taking
n account that, even if fuel cells usually work at not too high
urrent density, also under apparently safe conditions a large
art of the cell can locally work in conditions where diffusion
henomena significantly affect performance [11].

Other analogous approaches that refer to the chemical reactor
heory can be used when the optimisation of the electrode shape
nd the flow pattern in an electrochemical reactor are considered.
s examples, the studies of the comparison between interdigi-

ated and serpentine configurations in PEMFC electrodes can be
ited [15,16], a topic which seems to be worth further discus-
ion elsewhere. Here the comparison between a well-mixed and
longitudinal flow electrode will be discussed in some detail

see Part 2, Appendix D) and the results of the longitudinal-flow
lectrode study will be used in the analysis of MCFC anodes
see Part 2).

. From local to global kinetics

Eq. (11) is valid in local terms, but it is usually extended to
uch wider contexts. It is worth exemplifying the conditions
nder which it can be correctly extrapolated.
For the whole electrode, the definition of the apparent and

imit constants has to be made in terms of the mean values of
he reaction rate (or current density), obviously with reference

•
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o the inlet concentration:

ka = rm

CAo
= J

nFCAo
= KCAm

CAo
,

kL = rmL

CAo
= JL

nFCAo
= kcCAmL

CAo
(12)

As a consequence, the local Eq. (11) can be quite inadequate
nd require a correction. By defining

1

A
= CAm

CAo
= (
∫
S
CA dS)

(CAoS)
, A > 1 (13)

he preceding Eq. (12) can be summarised, for linear kinetics as

a = K

A
, kL = kc

AL
(14)

It is useful to compare a complex electrode, working at a non-
niform composition, with a corresponding simple electrode,
orking at uniform concentration CAo; for the simple electrode

he local Eq. (11) can be written as

1

K
= 1

ko
+ 1

kc
,

1

j
=
(

1

j∗o

)
exp(−βηo) + 1

jL
(15)

For a complex electrode, instead of the local constant K, con-
aining the reaction constant ko and the transport constant kc,
eference can be made to an averaging operation on the electrode
urface

1

Aka
= 1

ko
+ 1

kc
= 1

ko
+ 1

ALkL
(16)

1

AJ
=
(

1

j∗o

)
exp(−βηo) + 1

ALJL
(17)

o that the apparent constant ka and the limit constant kL can
e connected to local constants through the introduction of the
oefficients A and AL, which take account of all the effects of a
on-uniform concentration field.

The validity range of Eq. (16) is wider than that of Eq. (15),
ut it has its limits. In the first place, as said above, ko must be uni-
orm, that is the electrode must be isothermal and efficaciously
e-coupled. In the second place kc must also be uniform: partic-
lar shapes or flow fields can be associated with local differences
n the transport coefficient; this, moreover, can be affected by
ocal non-linear phenomena such as those connected with the
ulk flow towards the electrode (see Part 2, Appendix E).

However, in many instances, Eq. (16) can be taken as a guide
or a better understanding of some typical operations in the
nalysis of chemical and electrochemical reactions. In heteroge-
eous chemical reactions reference can be made to the following
ypical identification problems:

On the local scale, that is when it is possible to work on sim-
ple and uniform systems, the characterisation of the intrinsic

kinetics (kinetic constants and reaction orders) is relatively
easy.
On a larger scale, that is in terms of aggregates or reactors, the
characterisation of the intrinsic kinetics passes through a more
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articulated physical–mathematical description of the system:
the global or mean kinetics (ka) are measured, the transport
coefficients (kc) are estimated, the composition fields (A) are
simulated and averaged and the intrinsic kinetics (ko) are,
finally, determined. Only in rare cases the intrinsic kinetics
are already known from preceding measurements on simpler
systems, so that the transport phenomena can be the specific
objective of the identification problem.

hen dealing with electrochemical kinetics, the terms of the
iscussion remain substantially the same only when the local
cale is under consideration (laboratory systems which can be
onsidered simple electrodes), but they become rather different
t greater scales (complex electrodes), where the identification
roblem involves the measurement of the mean kinetics (J, ka)
nd intrinsic kinetics (V, ko) as well as the interpretation of the
imit kinetics (JL, kL) in terms of transport coefficients (kc) by
aking into account the concentration distribution (A, AL). The
dentification problem is often complicated by other unknowns
symmetry factor β, reaction orders) appearing in the relation-
hip between V and ko.

In both cases the preliminary measurements are restricted,
or what is possible, by well-controlled laboratory conditions,
here the identification problem can be simplified by reference

o uniform concentration fields (A = AL = 1) and non-controlling
ransport phenomena (kc � ko). In both cases the experimenta-
ion, at the laboratory or pilot scale, is then extended to systems
f larger sizes and greater complexity and, finally, the identifi-
ation problems give way to prevision problems, in particular
esign problems relating to developmental and commercial pur-
oses, on systems where the approximations under discussion
re nearly always unsuitable.

In other words, and to stress the point, Eq. (16), or, in more
lectrochemical language, Eq. (17) shows that the identification
f the global transport coefficient of an electrode, kc, requires
number of operations that are not always straightforward or

ertain and, in any case, a non-superficial level of theoretic
nalysis.

In the first place, the identification is possible by means of the
consideration of only one electrode on condition that the other
electrode is working under an approximately uniform voltage
field. When this is not the case, the consideration of only one
electrode cannot be considered significant and the transport
phenomena of the two electrodes cannot be de-coupled.
In the second place, the experimental work can be done
according to essentially known methods, by achieving cou-
ples of values for the current (J, that is ka) and the voltage (ηo,
that is, substantially, ko).
Finally, an estimation of the mean electrode concentration
(CAm, that is the parameter A) has to be made for the various
experimental conditions used and, in particular, for the limit
current conditions (JL, AL). The evaluation of these means

can be done experimentally, from local concentration mea-
surements taken at various points on the electrode, but an
alternative to this experimental burden can be found in the
calculation, starting with few known concentration values:

a

•
•
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usually, the inlet value CAo and the outlet value (1−u)CAo
are at least known, but employing a simple arithmetical mean,
such as CAm = CAo(1−u/2), may be inadequate.

In addition, particular attention has to be given to the depen-
ence of the transport coefficient on the flow conditions of the
eagent fluid in relationship to the electrode. The effects of the
ow conditions are usually appreciable on all the measured or
stimated parameters, especially the transport coefficients and
he averaging coefficient A. In the simplest cases the flow con-
itions can be taken into account in terms of a further kinetic
arameter alone, the “flow dynamic” constant

f = q

S
(18)

hat is the fluid flow rate per unit electrode surface, to be put
eside the previously considered reaction and transport con-
tants (see Appendix C1).

. Analysis and correlation methods

The approach discussed here highlights the advantages of a
nique and external reference. This approach will be underlined
n Appendix A.

Some considerations on dealing with the organisation and
he correlation of the experimental results according to what has
een reported in the previous section are presented in Appendix
. In Appendix C some examples of a theoretical nature are
iscussed, with the aim of illustrating the real relevance of the
veraging operations.

In Part 2 of this work different analysis methods will be
iscussed in relationship with different experimentation tech-
iques. In addition, concrete examples of their application
o Ansaldo Fuel Cells data will be presented in detail. In
ppendixes D and E of Part 2, moreover, the effects of the flow
eld on the electrode performance will be discussed on the basis
f the chemical reaction theory and its classical limit models.
any more examples could be added, but the ones cited can

e considered sufficient to provide a comprehensive overview
nd to draw some conclusions and rules for a more exhaustive
nd reliable analysis of the experimental current–voltage data in
erms of diffusive resistances.

. Conclusions

The analysis of the diffusive resistance is made difficult by
he non-linearity and complexity of the phenomena even at the
aboratory scale.

The problem can be tackled at the experimental level by using
number of different techniques: differential or finite perturba-

ion methods, constant flow or constant current methods, and so
n. However, the effects of each variation cannot be interpreted

s a simple phenomenon, but the result of at least two factors:

the local diffusive resistances set and
the concentration distribution of the electrode.
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The first can only be determined after estimating the second
y means of an adequate physical–mathematical description. To
chieve this it is particularly useful to make recourse to a close
nalogy between electrode kinetics and heterogeneous chemical
inetics with the reaction at the boundary and to use this analogy
ithin the chemical reactor theory.
As Part 2 will show in detail, this kind of analysis can be

uccessfully applied to fuel cell experimental data.

ppendix A. Kinetic expressions and reference
onditions

Given the local electrochemical kinetics of the kind

j = kΠiC
�i
is exp(βvs) − k′ΠiC

�i
is exp[(β − 1)vs],

v = VnF

RT
(A.1)

hich contains the concentrations and the voltage acting on an
lectrode point (Cis, vs) and must satisfy the thermodynamic
onsistence conditions

k

k′ = ΠiC
�i
i exp(−veq) = ΠiC

�i
is exp(−ves)

= ΠiC
�i
ir exp(−ver) (A.2)

reference can be chosen at the equilibrium condition corre-
ponding to an arbitrary composition Cir

∗r = kΠiC
�i
ir exp(βver) = k′ΠiC

�i
ir exp[(β − 1)ver] (A.3)

o that

j = j∗r{Πi

(
Cis

Cir

)�i

exp(βηr) − Πi

(
Cis

Cir

)�i+�i

exp[(β − 1)ηr]}, ηr = vs − ver (A.4)

In such a way, the local kinetics is written in terms of the
oltage loss in relationship to the equilibrium voltage of the
hosen external reference condition. This advantage has a price:
he local voltage loss in respect to the bulk fluid at composition

i, with which the irreversible phenomena of energy dissipation
re associated, is different from the one appearing in the kinetic
xpression (A.4)

= vs − veq = vs − ver + ver − veq

= ηr +
∑

i
�i ln

(
Cir

Ci

)
(A.5)

As the electrode concentration Cis and the local concentration
f the bulk fluid Ci are connected in transport equations, for
nstance under the form
= −kci(Ci − Cis)
nF

νi

, Cis = Ci + νij

nFkci
(A.6)

n Eq. (A.4) the concentration difference due to mass transfer
an be taken into account in terms of the transport coefficient kci

w

A
t

r Sources 172 (2007) 334–345

r in terms of limit currents, with reference to local conditions
jLi) or to reference conditions (jLri)

Li = −kciCi

nF

νi

, jLri = −kciCir
nF

νi

(A.7)

ielding

Cis

Cir
= Ci

Cir

(
1 + νij

nFkciCi

)
= Ci

Cir
+ νij

nFkciCir
= Ci

Cir
− j

jLri

(A.8)

nd

= j∗rΠi

[
Ci

Cir
+ νi j

nFkciCir

]�i

exp(βηr)

{
1 − Πi

[
Ci

Cir
+ νij

nFkciCir

]�i

exp(−ηr)

}
(A.9)

Besides the reaction order (�i) and the other coefficients of
stoichiometric nature (vi, β), this final form of the kinetic

xpression (A.9) contains

the reference composition Cir;
the exchange current j*r at the reference composition;
the transport coefficient between the fluid and electrode kci

or, alternatively, the limit current jLri at the reference compo-
sition;
the voltage loss ηr in relationship to the reference equilibrium;
the local composition Ci.

In particular, in many instances, the variable ηr can be con-
idered uniform on the electrode while, on the contrary, the local
ariable η surely is not. Moreover, the non-uniform concen-
ration variable Ci, in many cases of practical interest, can be
xpressed through the definition of a unique degree of advance-
ent

i = Cir(1 + νix) (A10)

r the utilization factor of a key reagent A

A = CAr(1 − u), Ci = Cir −
(

νi

νA

)
CAru (A.11)

herefore, Eq. (A.9) is equivalent to a kinetic function, at con-
tant temperature and voltage, depending on an advancement
ariable alone (x or u).

An electrode can be defined “simple” if all the local variables
T, P, ηr, x) are independent of their position, that is each assumes

unique uniform value on the electrode. For many complex
lectrodes, especially at the laboratory scale, the temperature,
he pressure and the voltage can be still assumed to be uniform,

hile the composition (degree of advancement) cannot.
It is worthwhile commenting further on the electrode voltage.

t uniform temperature and pressure the two coupled elec-
rodes have, at least at the laboratory scale and with a reasonable
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pproximation, equal current and a uniform voltage difference:∫
S

j(ηr, x) dS =
∫

S′
j′(η′

r, x
′) dS′,

(JS = J ′S′), ηr + η′
r = cost (A.12)

hen one of the electrodes is considered to be simple (for
nstance the one marked with the apex), the uniformity of η′

r
mplies the uniformity of ηr on the other electrode, although it
s not considered simple. In such cases, electrode kinetics of the
ype

= f (x) (A.13)

llow the extension of many of the identification, design and
ptimisation procedures of the classical theory of isothermal
hemical reactors to electrochemical reactors.

According to Eq. (A.9), a particularly simple and interesting
ase to analyse as a reference example is the one regarding a
nique limiting reagent A, with reaction order and stoichiomet-
ic coefficient equal to unity (αA = −vA = 1). Then the kinetic
xpression becomes

=
[
j∗r exp(βηr)

CAr

] [
CA − j

nFkc
− CAr exp(−ηr)

]
(A.14)

nd, if

Ae = CAr exp(−ηr) (A.15)

s the concentration at which the reagent fluid is in equilibrium
nder a given over-potential ηr, the electrochemical kinetics can
hen be reduced to simple linear kinetics

=
[
j∗r exp(βηr)

CAr

] [
CA − CAe − j

nFkc

]
(A.16)

y putting

= j

nF
, K = r

(CA − CAe)
, ko = j∗r exp(βηr)

nFCAr
(A.17)

q. (A.15) becomes simply

= K(CA − CAe), K =
(

1

ko
+ 1

kc

)−1

(A.18)

A similar result can also be achieved when more complex
inetics are considered. For instance, if two or more reagents
nd non-linear dependences are involved, an expression just like
he preceding is derived in the range of validity of a linearisation
f Eq. (A.9) for low utilisation factors (u � 1) and low currents
j � jLri).

ppendix B. How to determine the complexity

When the intrinsic kinetic constant ko increases, the appar-

nt kinetic constant ka is limited by the limit constant kL
0 < ka < kL). Therefore, both variables

= ka

kL
, (0 < X < 1) (B.1)
Sources 172 (2007) 334–345 341

= (ko − ka)

ko
, (0 < Y < 1) (B.2)

an vary in the range between zero (ko = ka = 0) and unity
ko � kL; ka = kL).

In local terms, or for a simple electrode with linear kinet-
cs, the limit constant coincides with the transport coefficient
kL = kc) and the apparent constant depends only on the intrinsic
onstant and the transport coefficient (1/ka = 1/K = 1/ko + 1/kc),
o that between X and Y the simple relationship

= X (B.3)

xists, that is equivalent to Eq. (15) and in an XY plot this
orresponds to the square diagonal.

On the contrary, for a complex electrode, with linear kinetics,
he composition distribution on the electrode, with CA < CAo,
mplies that the apparent constant as well as the limit con-
tant is less than the respective reference values (kL < kc; ka < K).
herefore, Eq. (B.3) must be correct, for instance in the form

Y

X
=1 − fc(X), fc= (kc − kL)

kc
+ (1 − A)

kL

ko
> 0 (B.4)

hat is equivalent to Eq. (16).
When the corrective function fc is null for all the values of

o, Eqs. (15) or (B.3) are recovered, while Eq. (B.4) with fc > 0
orresponds to a curve which is under the diagonal as much the
on-uniformity of the diffusive phenomena taking place at the
lectrode is important.

Of greater interest are the asymptotic solutions to which Eqs.
16) and (B.4) degenerate at the extremes of the range. At one
xtreme, in the field of low currents, a proportionality between
and Y can be assumed

o � kL, Y = coX, co = lim

[
Y

X

]
X→0

(B.5)

nd the value of the constant co can be obtained as an asymptote
f the experimental XY plot or in terms of the derivatives of ka in
elationship to ko. If X = Y = 0, ko/ka = 1 and dka/dko also = 1. In
he neighbourhood of this point the difference between ka and
o is only appreciable in terms of the second order derivative,
hat is ka = ko + (d2ka/dk2

o) k2
o/2. Therefore the proportionality

onstant is

o = −
(

kL

2

)(
d2ka

dk2
o

)
ka=ko

= 1

AL
+ kL

(
dA

dko

)
ka=ko

, fco = (1 − co) (B.6)

At the other extreme, in the high current field, the propor-
ionality can be assumed to be between 1−X and 1−Y

ko � kc, 1 − Y = cL(1 − X),
cL = lim

[
(1 − Y )

(1 − X)

]
X→1

(B.7)
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nd the proportionality constant s

L = k2
L

(k2
odka/dko) ka=kL

=
[
AL + (1/kc)(k2

odA/dko)ka=kL

]−1
, fcL = (cL − 1)

(B.8)

s ka becomes indistinguishable from kL for high, even if finite,
alues of ko, the limit of k2

odka/dko for ka = kL is often zero and
L diverges, that is the function Y(X) tends to the vertical X = 1.

Another parameter which can generally express the differ-
nces between Eqs. (B.3) and (B.4) is the size of the belly of
he curve, as measured by the segment on the other diagonal
Y = 1 − X; ko = kL) of the square, between the diagonal crossing
nd the intersection with the curve. The length d# of this segment
s

# = (
√

2/2)fc#

(2 − fc#)
(B.9)

here fc# indicates the correction in Eq. (B.4) for ko = kL.
Obviously, when Eq. (B.3), that is Eq. (11), is correct, the con-

tants assume the reference values corresponding to the principal
iagonal Eq. (B.3):

o = 1, cL = 1, d# = 0 (B.10)

hereas when there is some shifting from the diagonal, the
onstants will, in most cases, be Eqs. (16) and (B.4):

o < 1, cL > 1, d# > 0 (B.11)

The low current constant co is particularly important for the
roper characterisation of an electrode, as it directly modifies
he linear current–voltage relationships of type (5).

ppendix C. Some examples

The real relevance of the asymptotic constants co and cL can
e illustrated by reporting some significant examples.

.1. Stirred electrode

A first, very simple, example regards the behaviour of one
ell stirred electrode to which the reagent fluid is continuously

ed, so that a unique value of concentration CA is sufficient
o describe its steady condition (open system with concentrate
arameters, or continuous stirred tank reactor, CSTR). So, the
ocal condition is described by CA, while the inlet concentration
s CAo, which is connected to the former by the balance equation

Ao − CA = K

kf
CA, kf = q

S
(C.1)

nd the flow dynamic constant kf, (volumetric flow rate supplied
o the electrode per unit active surface).
In terms of the electrode concentration, according to Eq. (C.1)

A = CAo

(1 + K/kf)
(C.2)

p
p
n

r Sources 172 (2007) 334–345

he apparent constant referring to the inlet concentration
a = KCA/CAo is then

a = K

(1 + K/kf)
=
(

1

ko
+ 1

kc
+ 1

kf

)−1

(C.3)

nd corresponds to an averaging coefficient

= 1 + K

kf
(C.4)

Eq. (C.3) seems different from Eqs. (10) and (11), at least
ecause of the flow constant kf. In fact, if the discontinuous
oncentration drop from inlet CAo to internal CA is taken into
ccount, the electrode should be classified as “complex” and
ehavioural differences are to be expected when it is compared
ith the simple electrode at uniform CAo: the X–Y trends of a

tirred electrode with the position kL = kc typical for the simple
lectrode should be represented by a family of straight lines with
ncreasing slope with increasing kf. Nevertheless, from another
oint of view, the stirred electrode can be considered “simple”
ecause all its surface points work at uniform concentration CA.

In order to reconcile the two antithetic positions it is sufficient
o observe that, in the absence of reaction resistances, the limit
onstant is

L =
(

1

kc
+ 1

kf

)−1

(C.5)

hich is equivalent to

L = 1 + kc

kf
(C.6)

nd also depends on kf; in such a way it is possible to re-obtain
qs. (10) and (11) through the elimination of kc in Eqs. (C.3)
nd (C.5).

Eqs. (C.3) and (C.5) come from definition (12). In other
ords, the validity of Eq. (11) is extended thanks to defi-
ition (12) of the apparent and limit constants, a definition
hat has been stated in direct agreement with the experimental
vidence.

However, it is worth noting that the simple identity between
he transport coefficient and the limit constant in the second
quation in (9) is not adequate any more, while the valid position
as become the more complicated Eq. (C.5), in which the “flow”
onstant kf is also considered in order to take into account the
imits imposed on the electrode current by the amount of reagent
t its disposal. Obviously, only if the link between kL and kc is
nown, for instance the one in (C.5), Eq. (10) or (11) makes it
ossible to analyse the experimental results on the limit current
kL) in order to achieve a reliable characterisation of the transport
henomena (kc).

.2. Longitudinal flow electrode
A second example, which is apparently just as simple as the
receding, but able to highlight the possible difficulties of the
roblem, regards a planar electrode in contact with a longitudi-
ally flowing and transversally well mixed fluid: it is the system
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values, some section of a cell can really work under conditions
very close to the limit current and the complete exhaustion of
the reagents.

Fig. C.1. Longitudinal flow electrode. The asymptotic constants co and 1/cL as
a function of the rate kc/kf.
P. Costa, B. Bosio / Journal of

haracterised by a piston flow, that is the one defined as an ideal
ubular reactor (or plug flow reactor, PFR) in the chemical reac-
or theory. Under stationary and constant flow rate conditions,
he differential mass balance along the axial coordinate z, written
n terms of the utilisation factor

kfdu′ = K(1 − u′)dζ, ζ = 0 u′ = 0, ζ = 1 u′ = u

kf = q

S
, ζ = z

L
, K =

(
1

ko
+ 1

kc

llows the integral

= −kf ln(1 − u) (C.8)

nd the limit condition

c = −kf ln(1 − uL) (C.9)

oreover, it is

fu = ka, kf = uLkL (C.10)

nd, by combining Eqs. (C.8)–(C.10) with the last equation in
C.7) the variable X and Y are obtained in terms of the variable
used as a parameter

X = ka

kL
= u

uL

Y = 1 − ka

ko
= 1 + uLX

[
1

ln(1 − uLX)
− 1

ln(1 − uL)

] (C.11)

This time the similarity between the second equation in
C.11) and Eq. (11) is only very partial. Obviously both equa-
ions, thanks to the way they have been constructed, allow the
imits where the reaction (ka = 0 for ko � kL) or the transport
ka = kL for ko � kL) is controlling, but the characteristic con-
tants of the curve (B.4)

co =
(

kL

kf

)
(kc + 2kf)

2kc

cL =
(

kL

kc

)2 [
kf

(kf − kL)

]

d# = √
2

[
(2ka − kL)

kL

]
ko=kL

(C.12)

epend on the ratio kc/kf (see Figs. C.1 and C.2) and assume the
alues (B.10) only in the trivial case in which the flow constant
s quite non-limiting, or non-influencing (kf � kL). Under such
onditions the amount of the fed reagent is much more than
hat consumed (very low utilisation factors) and the reagent
oncentration is almost uniform along the length of the elec-
rode, so that the whole electrode behaves as a simple electrode
CA = CAo).

Under the contrary conditions, when the amount of the
nlet reagent becomes controlling (kf � kL), the characteristic
onstants (C.12) approach the limit values co = 1/2, 1/cL = 0,
espectively, and Eq. (C.11) tends to degenerate into ka/kL = 1,

hich is quite different from Eq. (11).
A first comment, of a reassuring nature, could be that a

eliberate choice of flow-controlling conditions (kf < kc) is very
nlikely, so that the values assumed by the asymptotic constants

F
k

Sources 172 (2007) 334–345 343

(C.7)

n (C.12) are almost always close to the reference ones in (B.10):
n such instances Eq. (11) is substantially acceptable for all the
alues of ko, that is the voltage, and the electrode behaves as a
imple one.

Just this kind of consideration, on the other hand, diverts
ttention from the circumstances in which the Eqs. (C.12) are
ore pertinent, so impeding a full appreciation of their role in

ossible malfunctions, often not foreseen nor suspected, in a par-
icular region of a cell or stack, at the commercial or laboratory
cale. In fact, even if usually the operative conditions involve a
urrent decidedly lower than the limit one in terms of average
ig. C.2. Longitudinal flow electrode. XY plot for different values of the ratio

c/kf. The diagonal represents the simple electrode.
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be reduced to

kc/kf � 1, ko > kc, ka = kL = kf (C.22)
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Moreover, and it is perhaps the most important point, the first
quation in (C.12) stresses the necessity of using a corrective
o constant different from unity in the interpretation of many
xperimental results, even if they are obtained under low current
onditions.

.3. Diffusive electrode under uniform velocity

Another example, which is particularly relevant for polymeric
embrane fuel cells in their special interdigitated or serpentine
ow configurations [15], is the that of a planar electrode in con-

act with a fluid flowing over its surface with a uniform velocity
eld. This uniformity is typically due to a porous medium (Darcy
ow) and the reagent can reach the electrode exclusively through
diffusive path orthogonal to the electrode direction. If v is the
elocity, s the thickness of the porous medium and L its length
nd reference is made to the pellicular regime where the resi-
ence times L/v are much lower than the diffusion times s2/DA,
he mean electrode current can be evaluated by integrating the
artial derivative system

v
∂CA

∂z
= DA

∂2CA

∂y2 (C.13)

= 0, CA = CAo (C.14)

= 0, −DA
∂CA

∂y
= koCA (C.15)

→ ∞,

[(
DAL

v

)1/2

� y < s

]
, CA = CAo (C.16)

n particular, the last boundary condition corresponds to the ref-
rence to a semi-infinite medium, which is fully coherent with
he pellicular regime assumption.

The operations of integration and calculation of the mean flux
owards the electrode, after having defined the flow dynamic and
ransport constant as

f = vs

L
, kc = DA

s
,

(
kc

kf
� 1

)
(C.17)

ield [16,17], for the apparent constant,

a =
(

4kfkc

π

)1/2

− kfkc

ko

{
1 − exp

(
k2

o

kckf

)
erfc

[
ko

(kckf)1/2

]}
(C.18)

hen ko/(kckf)1/2 � 1 (transport controlling) the preceding Eq.
C.18) can be written

L =
(

4kfkc

π

)1/2

(C.19)

o that, by eliminating kc between Eqs. (C.18) and (C.19)
a = kL −
(

πk2
L

4ko

){
1 − exp

(
4k2

o

πk2
L

)
erfc

[(
4k2

o

πk2
L

)1/2
]}

(C.20)
r Sources 172 (2007) 334–345

The characteristic asymptotic constant can so be obtained
rom Eq. (C.20) so that

co = 8

3π
= 0.849

cL = 4

π
= 1.274

d# =
(√

2

2

) [
1-
(

π

2

)
+
(

π

2

)
exp
(

4

π

)
erfc
(

4

π

)1/2
]

=0.05

(C.21)

here the asymptotic solution with controlling kinetics
ko/kc � 1) requires a series expansion of both the exponen-
ial and the error functions, while for the transport controlling
olution (ko/kc � 1) the well known approximation exp(x2)
rfc(x) ≈ 1/(

√
πx) for x � 1 is sufficient.

It is worth noting here that a non-controlling feed rate con-
ition is encountered (kc/kf � 1), where the reference values
B.10) should be expected to be correct, while Eq. (C.21) and
ig. C.3 show the necessity of a certain, non-negligible cor-
ection. In particular, the first equation in (C.21) indicates that
he simple electrode solution needs a correction by means of a
oefficient co less than unity even in the low current field.

Naturally, Eq. (C.18), as well as the other derived Eqs.
C.19)–(C.21), fail when the feed-rate limitations begin to act,
hat is the ratio kc/kf increases until it becomes comparable with
r even greater than unity. The complete solution for all the
alues of kc/kf = DAL/vs2 can be found in specialised books
17]; here it is sufficient to note that for kc/kf � 1 the semi-
nfinite layer hypothesis is no longer realistic and the diffusion
cts throughout all the layer thickness, so that other solutions
ecome sufficiently accurate instead of the one presented in this
ection, for instance those discussed in [16] or that of the pre-
eding section for a transversally well mixed flow. For instance,
q. (C.18), just as in the preceding example, also tends to finally
Fig. C.3. Uniform velocity electrode. XY plot for kc/kf � 1.
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ig. C.4. Porous electrode, local behaviour. XY plot for spDAeff/sexDaex = 3.

.4. A local example

The examples in subsections C1 and C2 refer to effects at
he electrode scale, for instance a “postcard” laboratory elec-
rode. In subsection C3 attention is shifted to a level which is
ore properly classifiable as an aggregate scale: for instance,

he considered flow pattern interests a small porous region,
or 2 mm in length and one or two tenths of a millimetre

n thickness, between two adduction channels of an interdig-
tated PEMFC. However, in all these examples, the diffusion
nd reaction paths are considered to take place strictly in
eries.

On the other hand, from a local point of view, the porous
tructure of an electrode may act by combining diffusion and
eaction in a series-parallel mechanism. Here the scale consid-
red is the one of the thickness of an electro-catalytic layer, that
s, typically, less than 100 �m.

In such instances, a rough and non-univocal local description
an do reference to an external diffusive layer, corresponding to
he external transport coefficient
cex = DAex

sex
(C.23)

nd to an internal reaction affected by diffusion, which can be
reated in terms of the effectiveness factor ϕ and the Thiele

[
[
[
[

Sources 172 (2007) 334–345 345

odule Φ

oeff = koϕ = k′
oapspϕ, ϕ = tghΦ

Φ
, Φ = sp

(
k′

oa

DAeff

)1/2

(C.24)

The apparent constant is then

1

ka
= 1

koϕ
+ 1

kL
, kL = kcex (C.25)

nd, between the low current range, where kinetics is controlling
ka = ko), and the high current range, where the external transport
s controlling (ka = kL), there may be an intermediate range where
oth internal diffusion and reaction act through the geometrical
ean ka = (koDAeff/s)1/2.
Moreover, due to the series-parallel mechanism, the sum of

he diffusive resistances decreases with increasing current, so
hat the X–Y plot lies over the square diagonal (see Fig. C.4).

Such effects will combine with the effects acting on the other
cales, so that an exhaustive separation and identification of the
arious effects could prove to be extremely difficult.
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